Thursday, 1 May 2014

`F(theta) = arcsin(sqrt(sin(theta)))` Find the derivative of the function. Simplify where possible.

`d/(dx)sin^-1(x)=1/sqrt(1-x^2)`


`F(theta)=sin^-1(sqrt(sin(theta)))`

`F'(theta)=(1/sqrt(1-sintheta))
* d/(d theta)sqrt(sintheta)`

`F'(theta)=(1/sqrt(1-sintheta))
*(1/2)(sintheta)^(-1/2) costheta`


`F'(theta)=costheta/((2sqrt(sintheta)sqrt(1-sintheta)))`

No comments:

Post a Comment